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Shortest paths on systems with power-law distributed long-range connections
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We discuss shortest-path lengthsl (r ) on periodic rings of sizeL supplemented with an average ofpL
randomly located long-range links whose lengths are distributed according toPl; l 2m. Using rescaling argu-
ments and numerical simulation on systems of up to 107 sites, we show that a characteristic lengthj exists
such thatl (r );r for r ,j but l (r );r us(m) for r @j. For smallp we find that the shortest-path length satisfies
the scaling relationl (r ,m,p)/j5 f (m,r /j). Three regions with different asymptotic behaviors are found,
respectively:~a! m.2 whereus51, ~b! 1,m,2 where 0,us(m),1/2, and~c! m,1 wherel (r ) behaves
logarithmically, i.e.,us50. The characteristic lengthj is of the formj;p2n with n51/(22m) in region~b!,
but depends onL as well in region~c!. A directed model of shortest paths is solved and compared with
numerical results.

DOI: 10.1103/PhysRevE.65.056709 PACS number~s!: 05.10.2a, 05.40.2a, 05.50.1q, 02.60.2x
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I. INTRODUCTION

It has been known for long that slowly decaying lon
ranged~LR! interactions can drastically change the critic
behavior of a system. A well studied example is the o
dimensional ~1D! Ising model with J(r );r 2m @1–10#,
which is relevant for the Kondo problem@11,12# among oth-
ers. If m.2 there is no ordered phase at any finite tempe
ture, the same as if only short-ranged interactions w
present. Whenm52 the magnetization undergoes a fin
jump at Tc.0, while all derivatives of the free energy re
main finite~essential singularity!. Whenm,2 the model dis-
plays a second-order phase transition withm-dependent criti-
cal indices, which take their classical, or mean-field~MF!
values form,1.5. On approach tom52 from below, the
correlation-length exponent diverges, signaling the app
ance of an essential singularity. This divergence is of
form n;(22m)21/2 @4# for Ising and (22m)21 for
n-component models withn.1 @but see Ref.@13#, wheren
;(22m)21 ;n is suggested#. A comprehensive account o
what is known for Ising systems with LR interactions h
been given by Luijten and Blote@8#.

For d-dimensionaln-component systems with ferromag
netic interactions decaying as 1/r d1s, Fisher, Ma, and Nickel
@3# propose that the lower critical decay rate is given bys
5d/2, or equivalently that the upper critical dimension
du52s. Fors,d/2 the critical indices take their MF values
for d/2,s,2 they ares dependent, and fors.2 they take
their short-range~SR! values. Similar investigations hav
been conducted for Potts@13–16#, Heisenberg@17–22#, and
other @23,24# models.

The following picture is often found: for small enoug
decay ratem, MF indices are obtained. Upon increasingm a
regime follows where critical indices change continuou
with m until finally SR indices are recovered. In a loo
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sense one can say that the addition of LR interacti
changes the ‘‘effective dimension’’ of the system, although
a way that may depend on the specific model conside
This idea has been exploited to study the scaling behavio
critical systems above their effective upper critical dime
sion du , while still working on lattices of low Euclidean
dimension@7#. The connection between LR interactions a
dimensionality was also briefly touched upon by Scale
@25#. A possible way to define an effective dimension, whi
is in general model dependent, is to do so through the hy
scaling relation (22a)5dn, as@10,16# de f f5n21(22a).

An alternative paradigm for the problem of LR intera
tions considers systems on ad-dimensional lattice supple
mented with randomly distributed LR bonds of unit streng
which are present with probabilitypi j ;r i j

2m . Notice that in
this case the system has disorder: it is the probability fo
given bond to be present, and not its strength, that dec
with distance. These two ways to introduce LR interactio
decaying strength~DS! and decaying probability~DP!, are
not, in principle, equivalent: it is well known that disorde
may change the critical behavior if the specific-heat ex
nenta is positive. In this case, the critical indices of a st
tistical model on DS and DP networks with the same value
m may differ.

The DP paradigm is on the other hand relevant for a nu
ber of problems in which connectivity, and not the streng
of the interaction, is determinant of the physical behav
Examples of problems of this kind are the magnetic@26# and
conductive@27,28# properties of polymeric chains, where th
probability of crosslinks between two monomers decays a
power law of the chemical distance between them, cond
tion in insulating matrices with one-dimensional conducti
inclusions@29# whose length distribution is ‘‘broad,’’ neura
networks@30,31#, geodesic propagation on spaces with top
logical singularities~wormholes!, the spread of fire or dis-
eases@32,33#, etc.

Networks built according to the DP paradigm of LR in
teractions may be characterized entirely in geometrical~or
topological! terms, because all bonds have the same stren
Thus it appears, for example, possible to define the relat
©2002 The American Physical Society09-1
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ship between effective dimensionde f f and decay ratem of
interactions in purely geometric terms for these networks

A useful topological characterization of random networ
is thegraph dimension dg , defined as follows: ifV(l ) is the
average number of sites that can be reached from a given
in l steps between connected neighbors, thenV(l );l dg

asymptotically. We now letl (r ) be the average smalles
number of links needed to join two points separated by
Euclidean distancer ~the ‘‘shortest-path length’’!, which be-
haves asymptotically asr us, where us is the shortest-path
dimension@34#. SinceV(r );r d, the above relations imply
that dg5d/us , and we see that the asymptotic behavior
l (r ) defines the graph dimensiondg .

In this work we study shortest-paths on DP networks, i
d-dimensional lattices with the addition of an average op
LR bonds~or shortcuts! per site, whose length is distribute
according toPl; l 2m. We shall concentrate mostly on th
cased51, where numerical simulations are easiest. DP n
works with power-law distributed LR bonds have been
cently considered in one dimension both from the point
view of random walk properties@35# and shortest-path
lengths@36#, but for small system sizes. We will later discu
some of the conclusions in@36#, which appear to need revi
sion in the light of our results.

In Sec. II several definitions that are relevant for our pro
lem of shortest-paths on 1D DP networks are given. Sim
rescaling arguments are used in Sec. II A to show tham
52d is a critical decay rate, such that form.2d, LR bonds
are unimportant on large scales. Form,2d, on the other
hand, whenp is small these arguments predict the existen
of a characteristic lengthj;p21/(22m), beyond which LR
bonds are important. In Sec. II B a directed model is int
duced for shortest-paths in 1D, which turns out to be ex
for m.2 and still provides a useful upper bound whenm
,2. In Sec. III our extensive numerical results for shorte
path lengthsl (r ) in one dimension are described and co
pared to theoretical predictions. Finally, Sec. IV contain
discussion of our results.

II. DP NETWORKS AND RESCALING

We start with an arbitraryd-dimensional lattice made u
of N5Ld sites, and its corresponding SR bonds. In addit
to these, DP networks are defined to have an average ofpLd

LR bonds, orshortcuts, whose lengths and locations are ra
dom. This is done in practice by letting one LR bond ste
from each sitei with probability p. The neighborj at the
other end of each LR bond is randomly chosen with a pr
ability P( j u i ), that is a decaying function of the Euclidea
distancer i j 5uxW i2xW j u between sitesi and j.

For a given realization of shortcuts, the shortest-p
length l i j is defined as the minimum number of connecte
neighbor steps needed to join sitesi and j. This quantity is
measured as a function of Euclidean distancer i j , and aver-
aged over disorder~realizations of shortcuts!. After disorder
average,l (r ) is the average ‘‘cost’’ of joining two points
separated by an Euclidean distancer, and is defined as
05670
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l ~r !5(
i j

^l i j &d~r i j 2r !/(
i j

d~r i j 2r !, ~1!

where^& means disorder average.

A. Rescaling

Consider now dividing thed-dimensional lattice into
‘‘blocks’’ of linear dimensionb, such that 1!b!L and re-
gard two sitesI andJ of this new lattice to be connected b
a shortcut ifanypair $ i PI , j PJ% is connected by a shortcu
We allow for at most one shortcut between rescaled s
since, for the purpose of shortest paths, the only fact
matters is whether two sites are connected or not. If
original pairsi j are connected by a shortcut with probabili
pi j , the rescaled probabilityq̃IJ512 p̃IJ for blocks I andJ
not to be connected is given by

q̃IJ5 )
i PI , j PJ

~12pi j !5 )
i PI , j PJ

qi j , ~2!

which for large distancesu i 2 j u@b can be approximated a

q̃IJ5qi j
b2d

. This can be written asq̃(r /b)5@q(r )#b2d
and,

therefore,l(r )5 ln q(r) transforms in a simple way unde
rescaling,

l̃~r /b!5b2dl~r !. ~3!

Thus

p~r !5~12e2r/r m
!, ~4!

retains its functional form under rescaling, i.e.,

p̃~r !5~12e2 r̃/r m
!, ~5!

with r̃5b(2d2m)r. The condition that the system contains
total of pLd LR bonds is ensured by imposing

p5SdE
1

L

p~r !r d21dr, ~6!

whereSd is the surface of ad-dimensional hypersphere o
radius one. This relationship fixesr as a function ofp andL.
In the limit of small p, r turns out to be proportional top.
Notice that, because of the multiplicative rescaling Eq.~2!, a
pure power law is not strictly invariant under rescaling. B
the true invariant distribution Eq.~4! can be very well ap-
proximated by a power law for large distancesr such that
r/r m!1. Restricting ourselves to the limit of smallr ~or p)
we can thus work with a power-law distribution of shortc
lengths. In the following we consider

p~r !5C
p

r m
, ~7!

where the normalization constantC is chosen so as to satisf
Eq. ~6!. In the Appendix we show thatp rescales as
9-2
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p̃5bypp, ~8!

with

yp5H d for m<d,

2d2m for m.d.
~9!

Notice that expressions similar to Eqs.~8! and ~9! give the
renormalized coupling constant of the one-dimensional
Ising model at low temperatures@6#.

It follows that p50 is a line of fixed points in them,p
space of parameters. Form,2d this fixed line is repulsive,
and becomes attractive form.2d. Thus form.2d the den-
sity of LR bonds is renormalized to zero under rescaling, a
mc52d is the upper critical decay rate above which L
bonds are irrelevant, and SR behavior is recovered.

B. Naive paths: An approximate model in one dimension

Consider a directed path that starts att50 from x050,
proceeds always to the right, and is built by using at each
any LR bond available, provided this bond does not take
path further to the right thanr. We call the path so define
the ‘‘naive path’’ between 0 andr. As compared with the
actual shortest path, this construction neglects the possib
of turnbacks, or that certain LR bonds may not be used~see
Fig. 1!. We will later see that under certain circumstanc
the naive-path approximation gives a reasonable estimat
shortest-path lengths. But even if this is not the case,
former constitutes an upper bound for the shortest-p
length, and thus still provides useful information. The naiv
path lengthl n(r ) is the number of time steps it takes
reachr, and can be estimated in the following way. At timet
the walker sits at sitext . From this site, with probabilityp a
LR bond~of random lengthl t! stems rightwards. The walke
now proceeds along this LR bond, provided it does not
further to the right thanr. The joint probabilityp̃t that a bond
is present atxt , and its length is not larger thanr 2xt is

p̃t5p (
l 51

r 2xt

Pl . ~10!

Thus at timet the walker goes one unit to the right wit
probability q̃t512 p̃t , and l t units with probability p̃t .
Therefore, in average

xt5xt21111 p̃t~ l̄ t21!, ~11!

FIG. 1. Full lines are SR bonds, dashed lines are LR bonds.
possible shortest path between 0 and 8 is$0-1,1-5,5-4,4-8% and has
length 4. The naive path uses all rightwards LR bonds availabl
each site, i.e.,$0-2,2-3,3-5,5-6,6-8% and has length 5 in this ex
ample.
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where l̄ t is the average length of a LR bond, which is n
larger thanr 2xt , i.e.,

l̄ t5

(
l 51

r 2xt

lPl

(
l 51

r 2xt

Pl

5
p

p̃
(
l 51

r 2xt

lPl . ~12!

Thus Eq.~11! reads

xt5xt21111pG~r 2xt!, ~13!

where

G~n!5(
l 51

n

~ l 21!Pl . ~14!

Within a continuous-time, continuous-space approximat
we put

ẋ~ t !511pG„r 2x~ t !…, ~15!

which shall be solved with boundary conditionsx(t50)
50 and x„t5l n(r )21…5r 21 @notice that Eqs.~10! and
~12! are only defined forxt<r 21#. This can be formally
integrated to give

l n~r !511E
1

r dx

11pG~x!
. ~16!

We will analyze this result and compare it with our nume
cal results in the following sections.

III. NUMERICAL RESULTS IN ONE DIMENSION

In this section, numerical results are presented for p
odic rings of up to 107 sites. One LR bond stems from eac
site with probabilityp<1. Its random lengthl is obtained by
first generating a real random variablez such that 1<z
,(L/211) with P(z);z2m, and then taking its integer par
l 5Int(z). Lattice sizes areLk51031k/2 for k50,1, . . . ,8.
The density of LR bonds isp50.001,0.003,0.01,0.033,0.1
and 1.0. Shortest paths are identified by breadth-first-se
@37,38#, and averages are taken over 104 samples. Altogether
the results presented in this work involve an amount of co
putational work approximately equivalent to finding of th
shortest paths on a single system containing 1012 sites. Fig-
ures 2, 3, and 4 show average shortest-path lengthsl (r ),
respectively, for the regions: 0<m<1, 1,m,2, and m
>2.

It is apparent in these plots thatl (r ) does not depend on
system sizeL ~only onp andm) for m.1. This is consistent
with the fact that the probabilityP(r ) for two sites separated
by an Euclidean distancer to be connected by a LR bon
does not depend onL whenm.d. @See Eq.~A6!#. In com-
parison, whenm,d one has thatP(r ) decays to zero with
system size asL2(d2m). This scale dependence in the co
nectivity properties is evidenced by the size dependenc
l (r ) whenm,1 in Fig. 2.

A second noticeable feature is that for allm,2 a charac-
teristic sizej exists with the following property: Forr !j,

ne

at
9-3
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l (r )'r , while for r .j, l (r ) grows asymptotically slowe
thanr; in general asr us with us,1. This characteristic sizej
is a function ofp andm for 1,m,2, but also depends onL
for m,1.

A. The µÌ2 regime

As seen in Sec. II, form.2 the density of LR bonds
rescales to zero, i.e.,p50 is an attractive fixed line. Thu
one does not expect LR bonds to modify the effective geo
etry of the lattice in this regime. In fact it is found~Fig. 4!
that l (r )}r at large distances, and thusde f f5d in this re-
gime, although the coefficient of proportionality depends
m and p, in general. Our directed model~naive paths! de-
scribed in Sec. II B gives exact results in this regime as
now show.

Naive paths whenmÌ2

Whenm.2, G(x) in Eq. ~16! grows monotonically from
G(1)50 to G(`)5 l̄ 21. Thus asymptotically l n(r )
5r /@11p( l̄ 21)#. In order to obtain the short-distance b
havior we may approximate, to first order inp( l̄ 21),

@11pG~x!#21'12pG~x!. ~17!

FIG. 2. Average shortest-path lengthl (r ) vs r. Numerical av-
erages~full lines! over 104 samples are shown for systems of si
Lk51031k/2 with k50,1, . . . ,8. Thedashed line isl (r )5r . The
local densityp of LR bonds isp51023, 1022, 1021, and 1. The
different cases can be told apart by noticing that larger valuesp
result in lower values ofl .
05670
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Equation~16! now reads

l n~r !'r @12pF~r !#, ~18!

where

F~r !5
1

r E1

r

G~x!dx ~19!

FIG. 3. Same as Fig. 2, for 1,m,2.

FIG. 4. Same as Fig. 2, form>2.
9-4



s
a

t
aw

e

in

ai
r

e
s

th
ed

th-

at

We

is

f
the

n

SHORTEST PATHS ON SYSTEMS WITH POWER-LAW . . . PHYSICAL REVIEW E65 056709
is a p-independent function that converges tol̄ 21 for large
r. Equation~19! can be integrated~see Appendix A 3!, and
the comparison between analytical and numerical result
done in Fig. 5. The coincidence betweeen the naive-p
model and numerical results is very good even atm52. Thus
we conclude that in them>2 regime and whenp is small,
shortest paths are essentially naive paths.

B. The 1ËµË2 regime

In Sec. II A we saw thatp50 is a repulsive fixed poin
for all m,2 in one dimension. Because of the rescaling l
Eq. ~8!, one expects a lengthscalej;p21/yp5p21/(22m) to
be relevant for the behavior ofl (r ) asp→0. For r !j, the
p50 fixed point is dominant@for which l (r )5r # while for
r @j the effects of LR bonds may become visible@ l (r )
shorter thanr #.

1. Naive paths when 1ËmË2

For m,2, l̄ is not well defined. However the averag
length l̃ t of a LR bond not larger thanr 2xt is well defined
and given by Eq.~12!. Notice thatG(r ) now grows asr 22m.
Equation~16! is still valid for naive paths, and one gets
the limit of large r that l (r );r m21, i.e., us

naive5m21. It
turns out that actual shortest paths are shorter than n
paths form,2, i.e,us

naive5m21 is only an upper bound fo
us ~see Sec. III B 3!.

Although the naive-path model fails to predict th
asymptotic behavior ofl (r ), it can nevertheless still help u
determine the characteristic lengthj beyond whichl (r )/r
→0. Keeping just the fastest-growing term inG(y) @Eq.
~18!# and equatingpG(j)'1, one getsj;p21/(22m), in full
accordance with rescaling arguments in Sec. II A and at
beginning of this section. We show next that this is verifi
numerically.

FIG. 5. Form.2 shortest path lengthsl (r ) are well approxi-
mated by Eq.~18! with F given by Eq.~19!. Shown in this plot are
our numerical results~solid lines! for F(r )5p21@12l (r )/r # for
small densities of LR bonds:p51023, 331022, and 1022. The
dashed line indicates our analytic result, Eq.~A10!.
05670
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2. A single characteristic lengthj

In this section we test the hypothesis that a single leng
scalej(p) dictates the behavior ofl (r ) in the limit of small
p, and show that for 1<m<2 this lengthscale isj
5p21/(22m), in accordance with rescaling arguments@Eq.
~8!# and naive-path predictions. We propose that, forp→0,

l ~r ,m,p!/j5 f ~m,r /j!, ~20!

wherej;p2n, and

f ~m,x!}H x for x!1,

xus(m) for x@1.
~21!

This means that allp-dependence ofl (r ) is contained in
j(p).

By comparison with our numerical results we find th
f (x) can be well approximated byf (x)5x/@11Cx(12us)#.
Therefore,

l ~r !/j'
r /j

11C~r /j!12us
, ~22!

or, equivalently,

r

l ~r !
21'C@rpn#12us, ~23!

provide a good approximation to our numerical results.
fit Eq. ~23! to our numerical data forL5107 and p
50.001,0.003,0.010 simultaneously@using n(m), us(m),
andC(m) as fitting parameters#, and findn andus as shown
in Fig. 6. These results are entirely consistent with 1/n5(2
2m) for 1,m,2. Larger values ofp are found not to fol-
low Eq. ~20! satisfactorily, therefore, we must regard th
scaling expression as only valid in thep→0 limit.

A plot of l (r )/j(p) vs r /j is shown in Fig. 7 forp
50.001, 0.003, and 0.010. The fact that all three values op
collapse neatly onto one single curve suffices to verify
correctness of our scaling ansatz Eq.~20! for small p. The
specific form of f (x) chosen in Eq.~22! should however
only be regarded as empiric.

Although for m,1 we do not expect Eq.~23! to hold
~since thenj has an additionalL-dependence not included i

FIG. 6. Numerical estimates for 1/n ~asterisks! andu ~pluses!,
obtained by fitting Eq.~22! to our data forL5107 and p50.001,
0.003, and 0.010. The dotted lines are 1/n522m and 1/n51.
9-5
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these expressions, see Sec. III C!, a fit of the data givesn
'1, indicating that thep dependence of the characteris
size j is of the formp21 in this region. This is again con
sistent with Eq.~9!. We will discuss the regimem,1 in
detail later in Sec. III C. Whenp is small andm is close to 2,
j grows too large. Consequently neitherj nor u can be cor-
rectly estimated form.1.6. Consider for examplep51022.
One then hasj;105 for m51.6, butj;1010, well beyond
our present reach, form51.8. Thus the estimates foru and
1/n in Fig. 6 are to be disregarded form.1.6.

3. Asymptotic exponentus

When r @j, we find thatl (r ) grows asymptotically as
r us. The shortest-path dimensionus depends onm only, goes
to zero asm→11 and jumps discontinuously tous51 at m
522. We estimateus by two different methods. A simple
power-law fit of the large-r behavior ofl (r ,m,p) gives the
estimates shown in Fig. 8 forL ranging from 103 to 107 and
several values ofp. Strong finite-size corrections affect th
smaller values ofp, for which j@L whenm→2. However,
for largeL all these estimates are seen to converge to sim
values within numerical accuracy.

The second method chosen to estimateus consists in fit-
ting our numerical data using Eq.~23! but with n51/(2
2m) instead of takingn as a fitting parameter as in Fig. 6
Fits of our data forL5107 and p50.001,0.003,0.010 pro
duce the values ofus shown in Fig. 9. Again the result
obtained form.1.6 are to be disregarded sincej is much
larger thanL for these values ofp. A naive interpretation of
the results in Fig. 8, for any fixed value ofL, could lead one
to believe that the transition between linear behavior@ l (r )
}r # and sublinear behavior@ l (r )/r→0 for r→`] happens
at a p-dependent boundarymc(p) @36#. However, a more
careful numerical analysis shows that this transition happ

FIG. 7. Data collapse ofl (r ), showing plots ofl /j vs r /j with
j(p)5p21/(22m), for p50.001, 0.003, and 0.010. The dashed li
is our approximate expression Eq.~22!. For larger values ofm,2
and the same values ofp, the characteristic size is much larger th
107.
05670
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at mc52 for all p in the thermodynamic limit, as predicte
by rescaling arguments~Sec. II A! and the naive-path mode
~Sec. II B!. This appears to be in partial disagreement w
recent work of Sen and Chakrabarti~SC! @36#, where the
‘‘regular lattice behavior’’@ l (L);L# is claimed to extend
belowm52 for small values ofp. SC explain what they cal
the lack of small-world behavior in lattice polymers as bei
a consequence of the small number of LR connections~small
p). Based on the analysis ofl (L) on relatively small (L
5104) systems, SC conclude that there is ap-dependent
phase boundarymc(p),2, and show that several lattic
polymer models lay marginally on the regular lattice@ l (L)
}L# side of this boundary. Our extensive numerical resu
and analytic considerations however show thatm52 is the
critical decay rate below whichl (r )!r , for anydensityp of
LR bonds. Thep-dependent boundary that SC observe is j
a logarithmically slow finite-size effect. At sufficiently low

FIG. 8. Asymptotic exponentus vs decay exponentm, obtained
from power-law fit of the large-r behavior ofl (r ), for L of the
form Lk51031k/2, k50,1, . . . ,8, and for thevalues of densities of
LR bondsp indicated in the respective plots. Lines are guides to
eye. In all four cases, the steepest curves correspond to larger v
of L.

FIG. 9. Numerical estimates for the asymptotic exponentus

~pluses! in Eq. ~22!, resulting from fits of our data forL5107 and
p50.001, 0.003, and 0.010 withj5p21/(22m). The rightmost two
points, form larger than 1.6, suffer from strong finite-size effec
and should be disregarded. The dotted line sketches what we
lieve is the true value ofus(m). The discontinuity atm52 is sug-
gested by the behavior of thep51.0 results in Fig. 8.
9-6
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values ofp, and form close to but lower than two, the cha
acteristic lengthj(m,p) is larger thanL and thusl (L)}L.
Equatingj5p21/(22m)5L, one obtains an apparent boun
ary m* (p)522 ln(1/p)/ ln(L) that converges logarithmically
slowly to mc52. ReplacingL5104, this last expression fol-
lows closely the boundary reported by SC in Fig. 3 of R
@36#.

There is a second aspect of Ref.@36# with which our
findings seem to be in disagreement. According to SC, th
are only two phases regarding the asymptotic behavio
l (r ). A logarithmic phase,l (L)} ln(L), for m,m* (p)'2,
and a linear phase form.m* (p). Our numerical evidence
however suggests a more complex scenario. For 1,m,2
we find thatl (r )}r us with us small but nonzero~Fig. 9!,
and only form,1 l becomes logarithmic~see Sec. III C!.

C. The 0ÏµË1 regime

The data in Fig. 2 clearly show thatl (r ) depends on
system sizeL if 0<m,1. In the specific casem50, each of
the L2d/2 possible LR bonds is present with the same pr
ability pL2d. This corresponds to ad-dimensional lattice
supplemented withpLd LR bonds whose ends are random
chosen, and goes under the name of small-world~SW! net-
work @32,39–47#. In particular it was recently found@32,44#
that on SW networks (m50) there is still a single characte
istic lengthr c dictating the behavior ofl (r ), but it depends
both onL andp, and diverges asL→`, in any dimensiond.
Analytic calculations@32# confirmed by numerical measure
ment @44,47# show that, ind dimensions,

l ~r !5H r for r ,r c,

r c for r .r c ,
~24!

wherer c;p21/d ln(KpLd) with K a constant.
In the particular cased51 one has r c(m50,L,p)

;p21 ln(4pL). So them50 case is relatively simple, with
l (r )5r for r , ln(4pL)/p and l (r )5 ln(4pL)/p for large r.

By inspection of Fig. 2 one concludes thatr c depends on
L as well as onp,m in the whole 0<m,1 range. Whenm
51 however, the characteristic length dictating the behav
of l (r ) is j5p21, and no longerL dependent, as shown i
Sec. III B. Guided by these observations, we now propose
empirical expression forr c in terms ofL,p,m in the whole
0<m<1 range. This expression has to result inj5p21

when m→1, andr c;p21 ln(pL) when m→0. It is easy to
verify that

r c~m,p,L !5p21 ln@4~pL!(12m)#/ ln~4! ~25!

satisfies both requirements. We find that this empirical
pression gives acceptable results for smallp. In Fig. 10 we
show l (r )/r c r /r c with r c given by Eq.~25!, for all values
of L ranging from 103 to 107 and p50.001, 0.003, and
0.010. The acceptable collapse of all data supports the v
ity of Eq. ~25! reasonably well.

We find that l (L) grows asymptotically as ln(L) for 0
,m<1. The naive-path model already predicts a logarithm
behavior atm51 as the following shows. Form51 one has
05670
.
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-

r

n

-

d-

c

~see the beginning of Sec. III! Pl5 ln@(l11)/l#/ln(L), from
which G(x)'x/ ln(L). Thus Eq.~16! can be written approxi-
mately as

l n
(m51)~r !511E

1

r dx

11x/r c
, ~26!

wherer c5p21 ln(L). Thus naive paths are determined, in t
m→1 limit, by a logarithmicallyL-dependent characteristi
size r c and a logarithmic behaviorl (r ); ln(r) above r c .
Given that actual shortest-paths must be shorter than n
paths, we conclude thatl (r ) is logarithmic for allm,1.

IV. CONCLUSIONS

We considered shortest paths ond-dimensional lattices of
Ld sites supplemented withpLd long-range connections
whose lengthsl are random variables with power-law distr
bution P( l ); l 2m. We call these networks, since it is th
probability to have a LR bond of lengthl, and not its
strength, what decays with distance. The limitm→0 is the
‘‘small-world’’ network of Watts and Strogatz@39#. Under a
rescaling transformation with scale parameterb in d dimen-
sions, a small local densityp of LR bonds transforms asp̃

FIG. 10. Shown is l /r c vs r /r c , with r c

5p21 ln(4(pL)(12m))/ln(4). The density of LR bonds isp50.001,
0.003, and 0.01. System sizesL are of the formLk51031k/2 with
k50,1, . . . ,8. Theproposed expression forr c has only been justi-
fied theoretically form50 @32,44#, and is purely empirical for 0
,m,1.
9-7
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5b2d2mp. In the (m,p) plane,p50 is a repulsive fixed line
for m,2d and an attractive fixed line form.2d. Thus res-
caling arguments predictmc52d to be a critical decay rate
above which LR bonds are irrelevant. Particularizing tod
51, a directed model that gives an upper bound for shor
paths can be analytically solved~Sec. II B! and has three
regions in them axis: ~a! l (r )}r for m.2, ~b! l (r )
}r m21 for 1,m,2, and~c! l (r ) logarithmic form,1. In
accordance with rescaling arguments, we find numeric
that in one dimensionm52 is a critical point separating
‘‘short-range phase’’ (m.2) where shortest-path lengths a
linear, l (r )}r , from a ‘‘long-range phase’’ (m,2) where
shortest-path lengths are sublinear,l (r )}r us with us,1.
Our finding thatmc52 for all p is consistent with previous
work of Jespersen and Blumen@35#, but is in disagreemen
with recent claims of Sen and Chakrabarty@36# who suggest
the existence of ap-dependent boundarym* (p). We showed
that this apparent boundary is a finite-size effect, due to
fast growth of a correlation lengthj asm→22.

For small p and 1<m<2, a characteristic sizej5p2n

with n51/(12m) dictates the shortest path properties. F
r ,j one hasl (r )'r while for r @j, l (r );r s

u(m) is found.
This divergence in the correlation length exponentn as m
→22 is of the same kind as reported for spin models pre
ously @4,8,13#.

For m,1 the characteristic size behaves asp21 but is
alsoL dependent and we find that Eq.~25! provides a good
empirical fit of both itsp andL dependence.

The asymptotic exponentus is found numerically to attain
its short-range valueus51 for m.2. It is discontinuous at
m52, where it probably takes a value near 1/2, and th
goes to zero smoothly asm→11. For m<1 we find loga-
rithmic ~or mean-field! behavior: us50 and l (r ); ln(r)
asymptotically. Form→0 l (r ) saturates at large distances
a value that depends logarithmically on system s
@32,44,47#.
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APPENDIX: SHORTCUT DISTRIBUTION

1. Normalization

The scale-invariant shortcut distributionp(r ) Eq. ~4! can
be approximated byp(r )'1 for r ,r c5r1/m and p(r )
'r/r m for r .r c . Thus the normalization condition Eq.~6!
can be written as

p5Sd5 E1

r c
r d21dr1rE

r c

L

r d212mdr for r c.1,

rE
1

L

r d212mdr for r c,1,

~A1!

so that ifVd5Sd /d is the volume of a unit radius sphere,
05670
st

ly

e

r

i-

n

e

,

p5VdH rdLd2m

d2m
2

mrd/m

d2m
21 for r.1,

rd~Ld2m21!

d2m
for r,1.

~A2!

Whenm,d and if p remains finite in theL→` limit one has
that

r5p
d2m

Sd
L2(d2m). ~A3!

This goes to zero for largeL, which justifies the power-law
approximation Eq.~7!. For m.d on the other hand, and
assumingp small,

r5p
m2d

Sd
, ~A4!

so that the power-law approximation holds for any finitep
whenm,d but only forp small whenm.d. The power-law
distribution is properly normalized when

15CE
1

L

r d212mdr→C5
~m2d!Lm2d

Sd~Lm2d21!
, ~A5!

therefore, in the limit of largeL,

p~r !55
~m2d!

Sd

p

r m
for m.d,

~d2m!

SdLd2m

p

r m
for m,d,

~A6!

gives the probability for two sites separated by an Euclide
distancer to be connected by a LR bond.

2. Rescaling

From the rescaling ofr, Eq. ~3!, and the relationships
~A3! and ~A4! betweenr andp it is immediate to conclude
that

p̃5bypp, ~A7!

with

yp5H d for m<d,

2d2m for m.d.
~A8!

3. Naive paths whenµÌ2

For m.1 andL@1 we have thatPl5 l 12m2( l 11)12m.
Using this expression, Eq.~14! gives G(x)5( l 51

x ( l
21)@ l 12m2( l 11)12m# 5H(x11,m21)212(x11)2m

1(x11)2(m21), where H(x,a)5( l 51
x 1/l a are called har-

monic numbers.H(x,a) can be approximated~within 1%
error! for all a>1 andx>2 by
9-8
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H~x,a!'1122a1
32a1x2a

2
1

x12a2312a

12a
. ~A9!

Within this approximation one obtains (l̄ 21)5H(`,m
21)215212m1(312m)/21(322m)/(m22), which is
found to be very accurate for allm>2. Using this approxi-
mate expression, Eq.~19! can be integrated to give
05670
F~r !5
~ l̄ 21!~r 21!

r
2

Z~r ,32m!

r ~m22!
1

3Z~r ,22m!

2r

2
Z~r ,12m!

r
, ~A10!

whereZ(x,a)5@(x11)a22a#/a.
k-

g.
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